Exploring STEM Trends in Enrollment and Persistence for Underrepresented Populations

Higher Education Collaborative

November 12, 2010

Funded by the Ford Foundation & the National Science Foundation
Presentation Overview

• What is STEM?
• Reasons for Investigating STEM
• Historic Trends of STEM Participation
• Purpose of the Study
• Project Components
• Longitudinal Data
• Undergraduate Student Survey
• STEM Intervention Programs
What is STEM?

• Science, Technology, Engineering, and Mathematics (STEM)

• Disaggregating STEM
 – Physical Science, Computer Science, Mathematics, and Engineering (PSCSME)
 – Agricultural and Biological Sciences (ABS)
 – Health Sciences and Psychology (HSP)
Reasons for Investigation

• Social justice – Reducing inequality and improving opportunities
• Workforce preparation and economic competitiveness
• Changing demographics
• Benefits of diversity
• Connection between social stratification, opportunities for social mobility, and higher education
Historic Trends of STEM Participation
Figure 1. Minority Share of S&E and Non-S&E bachelor’s degrees (1995—2008)

Figure 2. Bachelor’s degrees earned in Physical Science, Computer Science, Math and Engineering, by sex, 1966–2006

Purpose of the Study

• Examine entrance into, persistence in and attainment in the STEM fields at large, public, research universities
 – By gender
 – By race/ethnicity
 – By SES

• Examine movement in, out, and within STEM between students’ enrollment and degree attainment
Purpose of the Study (con’t)

• Examine the design, implementation, and impact of STEM intervention programs on underrepresented undergraduate students

• Understand the reasons for and influences on students’ choice of major and persistence in major, including participation in intervention programs

• Disaggregate STEM fields
Project Components

- **Longitudinal Student-Level Data (8 universities)**
 - Transcript Data

- **Online Survey of Current Undergraduate Students (10 universities)**

- **STEM Intervention Programs (10 universities)**
 - Interviews with Program Directors & Administrators
 - Content Analysis of Intervention Program Documents
Longitudinal Data
Longitudinal Data

• Mellon Foundation’s *Public University Database*
• Fall 1999—Spring 2005
• 8 Universities
• Variables
 – Social background information
 – Academic qualifications
 – Semester-by-semester major
 – Semester-by-semester GPA
 – Financial aid information (for FAFSA filers)
• Transcript Data for Select Institutions
Topics of Investigation

- Initial choice of major
- Persistence in initial major
- Patterns of switching between majors
- Factors that impact persistence in initial major
- Comparisons between
 - Men and Women
 - Women by Race/Ethnicity
Data & Methodology

• Data:
 – 5 land-grant universities
 – First-time, full-time, domestic freshman who began college in Fall 1999 and completed a bachelor’s degree within 6 years
 – n=16,850

• Methods
 – Descriptive Statistics
 – Binary Logistic Regression
Profile of Undergraduates

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>50.8%</td>
</tr>
<tr>
<td>Female</td>
<td>49.2%</td>
</tr>
<tr>
<td>Asian</td>
<td>5.9%</td>
</tr>
<tr>
<td>Black</td>
<td>4.1%</td>
</tr>
<tr>
<td>Latino/a</td>
<td>2.4%</td>
</tr>
<tr>
<td>Native American, Other, Unknown</td>
<td>1.5%</td>
</tr>
<tr>
<td>White</td>
<td>86%</td>
</tr>
<tr>
<td>Out-of-State</td>
<td>34.3%</td>
</tr>
<tr>
<td>In-State</td>
<td>65.7%</td>
</tr>
<tr>
<td>Average SAT Math</td>
<td>603</td>
</tr>
<tr>
<td>Average SAT Verbal</td>
<td>579</td>
</tr>
<tr>
<td>Average SAT Total</td>
<td>1181</td>
</tr>
</tbody>
</table>
Figure 3. Initial Major Choice, by field, sex, and race/ethnicity
Persistence in Major

- PSCSME - Men out-persisted women
- ABS and HSP - Women out-persisted men
- Asian women persisted at higher rates in PSCSME
- Black women have lowest levels of persistence in PSCSME and ABS
- Latinas persisted at the same rate as white women in PSCSME and ABS, and a higher rates than Asian and Black women in ABS
- Regardless of persistence status and their last major category, women graduated faster than men
Figure 4. Switching Majors, by sex and field

- Physical Science, Computer Science, Math & Engineering (PSCSME)
- Health Sciences & Psychology (HSP)
- Agricultural & Biological Sciences (ABS)
- Non-STEM

Arrows indicate directions of switching majors by sex: Men (orange) and Women (blue).
Factors that Impact Persistence

• Being female had a negative impact on persisting in PSCSME but a positive impact on HSP
• Context matters, particularly for female students
• Being an in-state resident had a negative impact on persisting in PSCSME
• Lower levels of parental income had a negative impact on persisting in HSP and Non-STEM
• Within women, race and ethnicity were non-significant (FAFSA: Latinas had a positive impact on PSCSME)
Limitations: Longitudinal Data

• Data
 – Secondary data
 – Limited generalizability
 – Selection bias

• Methodology
 – First and last major
 – Movement within major fields
Main Findings

• Importance of disaggregating STEM
• Importance of examining where students “go”
 – A departure from some STEM fields is not necessarily a departure from science
• Understanding the complexity of STEM participation
Undergraduate Student Survey
Undergraduate Student Survey

• 10 Universities
• Survey current undergraduate students
• Examine factors that influence choice of major and persistence in major, including:
 • Participation in intervention programs
 • Pre-College experiences
 • College experiences
 • Financial Aid
 • Influence of peers, family members, teachers, and counselors
Topics of Interest

• Science Identity
 – Do science identities differ by gender? If so, how do they differ?
 – Do students’ perceived self-efficacy in math and science differ by gender?

• Campus Climate
 – To what extent do undergraduate students experience campus climate differently?
 • By Gender
 • By Race/Ethnicity
Science Identity

• One campus (n = 448)
• 47% male, 51.6% female
• Science Identity Constructs
 – I identify as a scientist
 – My faculty recognize me as a scientist
 – My peers recognize me as a scientist
 – Seeing other people who look like me within my field reinforces my scientist identity
Science Identity Results

• A greater percentage of women identify as scientists
• A greater percentage of females agree or strongly agree that faculty recognize them as scientists
• Females report having to work harder than males in order to be recognized as a scientist by others due to their gender
Science Identity Results (con’t)

• 60% of women and 73% of men reported feeling very confident in their math and science skills

• Women who reported no or little confidence in math and science skills felt the need to have a female role model to reinforce their science identity.
Climate Study

- Two campuses (n=892)
- 38.7% male, 42.5% female
- 55% white, 10% Asian or Pacific Islander, 3.7% Black, 5.2% Latino, 0.5% Native American or Alaskan Native

- Current majors:
 - 25.9% Engineering
 - 20.5% Biological and Biomedical Sciences
 - 16.4% Health Professions and Related Clinical Sciences
 - 8.5% Physical Sciences
 - 3.4% Computer and Information Sciences
 - 2.8% Mathematics/Statistics
 - 0.6% Natural Resources and Conservation
Climate Study Constructs

• My major field department is my intellectual home
• The faculty in my department make me feel welcome
• The students in my department make me feel welcome
• I have a sense of belonging in my major
• The faculty in my department want me to succeed.
Climate Study Findings

• Female and males both reported feeling that their department served as their intellectual home
• Female students were less likely to perceive departmental faculty as welcoming as compared to male students
• Latino/a students were less likely to identify their department as their intellectual home
• Latino/a students were less likely to perceive their department faculty and peers as welcoming in comparison to white and Black students.
Limitations: Survey Data

- Data collection is on-going
 - Responses have varied by university
- Representation of STEM fields varies
- Low number of responses by students of color
- Length of survey
STEM Intervention Programs
STEM Intervention Programs

- 10 Universities
- Interviews with directors and administrators
- Examined design, implementation, impact on students, and benefits of programs
- Gathered existing data, reports, and evaluations from participating programs
Guiding Questions

• What theories or perspectives guide the design of STEM intervention programs?
• How are STEM intervention programs – Structured?
 – Staffed?
 – Funded?
• What are the common challenges that STEM intervention programs face?
Profile of Participants

• Data
 – Interview data has been gathered from 9 large, public, research universities.
 – 47 participants
 – 11 male, 36 female
 – 27 white, 19 African American, 4 Hispanic, 1 Native American, and 1 Asian American
 – A total of 97 documents and reports were gathered from the STEM intervention programs.

• Methods
 – Qualitative Methods
 – Semi-structured interviews with program administrators
 – Content Analysis*
Common Trends Among Intervention Programs

• Evolution of Programs
 – Change of Mission
 – Selection of Participants
 – Student Qualifications

• Collaborative Efforts

• Financial Support and the Impact on Delivery of Services
 – National & State Budget Deficits
 – Sources of Funding

• Assessment Efforts in Measuring Outcomes

• Staff/Program Expertise
Recommendations

• Pursue stable, recurring funding
• Purposeful staffing
• Investigate opportunities for collaboration inside & outside home institution to assist with
 • Service delivery
 • Program design
 • Program assessment
 • Funding
Limitations: Interview Data

- Nine large, four-year, research-intensive, and predominantly white universities
- Response rate based on self-selection
- Recruitment to participate based on publicly available information of STEM intervention programs on each institutions’ website
- Programs are housed in certain STEM fields
- No contemporaneous statements from students participating in programs
Future Research & Next Steps

• Incorporate transcript-level data
• Additional analyses of Mellon data
 – Merge Common Core Data on high schools
• Complete survey data collection and expand analysis
• Content Analysis of STEM intervention programs’ documents
• CIC-wide graduate-level course on Access to and Success in STEM (Spring 2012)
Questions & Discussion

Contact Information
Project STEP-UP
217-244-5274

stem@education.illinois.edu
http://stepup.education.illinois.edu/
http://twitter.com/ProjectStepUP
Facebook: step-up project

This material is based upon work supported by the National Science Foundation under Grant No. 0856309. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Project Staff

- William Trent (Principal Investigator)
- Lorenzo Baber (Co-Principal Investigator)
- Casey E. George-Jackson (Project Director)
- Chanee Anderson (Research Assistant)
- Shywon Berry (Research Assistant)
- Diane Fuselier-Thompson (Research Assistant)
- Blanca Rincon (Research Assistant)
- Kimberly S. Walker (Research Assistant)
- Montrischa Williams (Research Assistant)